首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7377篇
  免费   729篇
  国内免费   2篇
  2021年   92篇
  2018年   90篇
  2017年   66篇
  2016年   97篇
  2015年   207篇
  2014年   232篇
  2013年   310篇
  2012年   349篇
  2011年   312篇
  2010年   208篇
  2009年   194篇
  2008年   297篇
  2007年   279篇
  2006年   282篇
  2005年   267篇
  2004年   225篇
  2003年   257篇
  2002年   218篇
  2001年   210篇
  2000年   190篇
  1999年   173篇
  1998年   91篇
  1997年   78篇
  1996年   68篇
  1995年   76篇
  1994年   77篇
  1993年   79篇
  1992年   153篇
  1991年   155篇
  1990年   137篇
  1989年   133篇
  1988年   135篇
  1987年   141篇
  1986年   110篇
  1985年   94篇
  1984年   107篇
  1983年   98篇
  1981年   75篇
  1980年   74篇
  1979年   76篇
  1978年   85篇
  1977年   86篇
  1975年   85篇
  1974年   87篇
  1973年   93篇
  1972年   88篇
  1971年   91篇
  1970年   68篇
  1969年   73篇
  1968年   67篇
排序方式: 共有8108条查询结果,搜索用时 15 毫秒
101.
Protein kinase C (PKC) activity in aortic and renal arterial smooth muscle from SHR (20-23 wk male; mean arterial pressure = 178 mm Hg) and WKY (age/sex matched; mean arterial pressure = 126 mm Hg) was quantitated. Activity was greatest in the particulate fractions relative to the soluble fractions in all sources. The only difference between SHR and WKY was in the soluble fraction from SHR renal arteries, which had 2 fold more activity (255 pmol/mg/min) when compared with WKY (136 pmol/mg/min). This difference was not apparently related to force modulation, since the magnitude of isometric force development in renal arteries in response to phorbol 12,13-dibutyrate was not different between SHR and WKY. The magnitude of force developed in response to phorbol 12,13-dibutyrate and PKC activity in the particulate fraction was greatest in aorta vs. renal arteries in both WKY and SHR. These results suggest that regional vascular differences in the amount of PKC activity may exist which are not apparently related to a disease state (i.e., hypertension). These differences may be related to differential sensitivity to phorbol ester-mediated contractions in isolated smooth muscle.  相似文献   
102.
G W Ashley  G Harris  J A Stubbe 《Biochemistry》1988,27(20):7841-7845
The ribonucleoside triphosphate reductase of Lactobacillus leichmannii converts the substrate analogue 2'-chloro-2'-deoxyuridine 5'-triphosphate (ClUTP) into a mixture of 2'-deoxyuridine triphosphate (dUTP) and the unstable product 3'-keto-2'-deoxyuridine triphosphate (3'-keto-dUTP). This ketone can be trapped by reduction with NaBH4, producing a 4:1 mixture of xylo-dUTP and dUTP. When [3'-3H]ClUTP is treated with enzyme in the presence of NaBH4, the isomeric deoxyuridines isolated after alkaline phosphatase treatment retained 15% of the 3H in ClUTP. Degradation of these isomeric nucleosides has established the location of the 3H in 3'-keto-dUTP as predominantly 2'(S). The xylo-dU had 98.6% of its label at the 2'(S) position and 1.5% at 2'(R). The isolated dU had 89.6% of its label at 2'(S) and 1.4% at 2'(R), with the remaining 9% label inferred to be at the 3'-carbon, this resulting from the direct enzymic production of dUTP. These results are consistent with enzymic production of a 1:1000 mixture of dUTP and 3'-keto-dUTP, where the 3'-hydrogen of ClUTP is retained at 3' during production of dUTP and is transferred to 2'(S) during production of 3'-keto-dUTP. The implications of these results and the unique role of the cofactor adenosylcobalamin (Ashley et al., 1986) are discussed in terms of reductase being a model for the B12-dependent rearrangement reactions.  相似文献   
103.
G W Ashley  G Harris  J Stubbe 《Biochemistry》1988,27(12):4305-4310
The ribonucleoside triphosphate reductase (RTPR) of Lactobacillus leichmannii is inactivated by the substrate analogue 2'-chloro-2'-deoxyuridine 5'-triphosphate (ClUTP). Inactivation is due to alkylation by 2-methylene-3(2H)-furanone, a decomposition product of the enzymic product 3'-keto-2'-deoxyuridine triphosphate. The former has been unambiguously identified as 2-[(ethylthio)methyl]-3(2H)-furanone, an ethanethiol trapped adduct, which is identical by 1H NMR spectroscopy with material synthesized chemically. Subsequent to rapid inactivation, a slow process occurs that results in formation of a new protein-associated chromophore absorbing maximally near 320 nm. The terminal stages of the inactivation have now been investigated in detail. The alkylation and inactivation stoichiometries were studied as a function of the ratio of ClUTP to enzyme. At high enzyme concentrations (0.1 mM), 1 equiv of [5'-3H]ClUTP resulted in 0.9 equiv of 3H bound to protein and 83% inactivation. The amount of labeling of RTPR increased with increasing ClUTP concentration up to the maximum of approximately 4 labels/RTPR, yet the degree of inactivation did not increase proportionally. This suggests that (1) RTPR may be inactivated by alkylation of a single site and (2) decomposition of 3'-keto-dUTP is not necessarily enzyme catalyzed. The formation of the new protein chromophore was also monitored during inactivation and found to reach its full extent upon the first alkylation. Thus, out of four alkylation sites, only one appears capable of undergoing the subsequent reaction to form the new chromophore. While chromophore formation was prevented by NaBH4 treatment, the chromophore itself is resistant to reduction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
104.
Phorbol esters induce morphologic and biochemical differentiation in U937 cells, a monocyte/macrophage-like line derived from a human histiocytic lymphoma. We are interested in the phorbol ester-stimulated release of arachidonic acid from cellular membranes and the subsequent synthesis of eicosanoids, as it may prove to correlate with the induced cellular differentiation. Undifferentiated log-phase U937 cells released little recently incorporated [3H]arachidonic acid, but phorbol 12-myristate 13-acetate increased its apparent rate of release to that of cells differentiated by exposure to phorbol myristate acetate for 3 days. Exposure of washed differentiated cells immediately prelabelled with [3H]arachidonic acid to additional phorbol myristate acetate did not augment the release of [3H]arachidonic acid. The basal release of nonradioactive fatty acids from differentiated cells was 5-10 times that of undifferentiated cells, and phorbol myristate acetate increased their release from both types of cell 2- to 3-fold. Differentiated cells immediately prelabelled with [3H]arachidonic acid exhibited greater incorporation into phosphatidylinositol and phosphatidylcholine, and contained more radioactive free arachidonic acid, compared with undifferentiated cells. Undifferentiated cells contained more radioactivity in phosphatidylserine, phosphatidylethanolamine and neutral lipids. Phorbol myristate acetate caused differentiated cells to release [3H]arachidonic acid from phosphatidylinositol, phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine, but release from neutral lipids was reduced, and the content of [3H]arachidonic acid increased. In undifferentiated cells incubated with phorbol myristate acetate, radioactivity associated with phosphatidylserine, phosphatidylethanolamine and neutral lipid was reduced and [3H]arachidonic acid was unchanged. Synthesis of cyclooxygenase products exceeded that of lipoxygenase products in both differentiated and undifferentiated cells. Phorbol myristate acetate increased the synthesis of both types of product, cyclooxygenase-dependent more than lipoxygenase-dependent, especially in differentiated cells. The biological significance of these changes in lipid metabolism that accompany phorbol myristate acetate-induced differentiation are yet to be established.  相似文献   
105.
Recent evidence localizing the inflammatory mediator, platelet activating factor, (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) to the membranes of stimulated neutrophils raises the possibility that PAF may, in addition to its activities as a mediator, alter the physical properties of membranes. Accordingly, the effects of PAF and related alkyl ether and acyl analogs on phase transition thermodynamics of dipalmitoylphosphatidylcholine (DPPC) were studied using fluorescence polarization of the fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene (DPH). PAF, its ester analog (1-palmitoyl-2-acetylphosphatidylcholine) and both the corresponding alkyl and acyl lysophospholipid analogs (each at a concentration of 10 mol%) significantly decreased the phase transition temperature and broadened the phase transition of DPPC (P less than 0.05). The relative potency of the lipids in causing this effect was ester-PAF greater than or equal to PAF greater than or equal to lyso-PAF greater than lyso-PC suggesting that the fluidization of the synthetic membranes was attributable to both the 2-position acetyl group and the 1-position alkyl linkage. Furthermore, using various related compounds, increases in chain length and degree of unsaturation in the 2-position were shown to enhance the depression in transition temperature and broadening of the phase transition. Phase transition thermodynamics were also assessed using differential scanning calorimetry. Similar depression in the phase transition temperature was measured for PAF and both the alkyl and acyl lysophospholipids. Broadening of the phase transition for DPPC by the various analogs was assessed by calculation of transition peak width and cooperative unit. Data from fluorescence polarization and differential scanning calorimetry provide similar though not identical results and support the hypothesis that the unique features of PAF may alter membrane physical properties and could ultimately explain some of its biologic actions.  相似文献   
106.
The pH dependence of the kinetic parameters and the primary deuterium isotope effects with nicotinamide adenine dinucleotide (NAD) and also thionicotinamide adenine dinucleotide (thio-NAD) as the nucleotide substrates were determined in order to obtain information about the chemical mechanism and location of rate-determining steps for the Ascaris suum NAD-malic enzyme reaction. The maximum velocity with thio-NAD as the nucleotide is pH-independent from pH 4.2 to 9.6, while with NAD, V decreases below a pK of 4.8. V/K for both nucleotides decreases below a pK of 5.6 and above a pK of 8.9. Both the tartronate pKi and V/Kmalate decrease below a pK of 4.8 and above a pK of 8.9. Oxalate is competitive vs. malate above pH 7 and noncompetitive below pH 7 with NAD as the nucleotide. The oxalate Kis increases from a constant value above a pK of 4.9 to another constant value above a pK of 6.7. The oxalate Kii also increases above a pK of 4.9, and this inhibition is enhanced by NADH. In the presence of thio-NAD the inhibition by oxalate is competitive vs. malate below pH 7. For thio-NAD, both DV and D(V/K) are pH-independent and equal to 1.7. With NAD as the nucleotide, DV decreases to 1.0 below a pK of 4.9, while D(V/KNAD) and D(V/Kmalate) are pH-independent. Above pH 7 the isotope effects on V and the V/K values for NAD and malate are equal to 1.45, the pH-independent value of DV above pH 7. From the above data, the following conclusions can be made concerning the mechanism for this enzyme. Substrates bind to only the correctly protonated form of the enzyme. Two enzyme groups are necessary for binding of substrates and catalysis. Both NAD and malate are released from the Michaelis complex at equal rates which are equal to the rate of NADH release from E-NADH above pH 7. Below pH 7 NADH release becomes more rate-determining as the pH decreases until at pH 4.0 it completely limits the overall rate of the reaction.  相似文献   
107.
It is known that adrenergic agonists stimulate thermogenesis in the brown fat of the young rabbit but the receptors responsible for mediating the response have not been identified. The infusion of either noradrenaline or isoproterenol (1-2 micrograms . kg-1 X min-1) produced an increase in subcutaneous temperature (0.93 +/- 0.15 and 1.22 +/- 0.10 degrees C, respectively over the interscapular brown fat. At low doses (0.4 microgram . kg-1 X min-1) only isoproterenol was effective. The thermogenic response to isoproterenol was blocked by atenolol, a beta 1-adrenergic antagonist. Neither salbutamol or terbutaline, both beta 2-agonists, produced a temperature increase. Collectively, these data suggest that stimulation of beta 1-adrenoceptor is primarily responsible for the thermogenic activity of brown fat in the rabbit. However, it was found that 53% of the increase in temperature could be blocked by prazosin, an alpha 1-antagonist. Phentolamine was not effective as a blocker. Although a maximal brown fat thermogenic response can be achieved by stimulating the beta-adrenoceptors, the alpha-adrenoceptors appears to play at least an auxiliary role in young rabbit.  相似文献   
108.
This work examined the noradrenaline content of brown adipose tissue, the metabolic response to endogenous noradrenaline released during tyramine infusion, and the innervation of brown fat at the electron microscopic level in the young rabbit. The noradrenaline content (ng/g) of the interscapular and cervical fat deposits ranged from 256 +/- 51 to 343 +/- 59 and 399 +/- 18 to 694 +/- 92, respectively, in four groups of rabbits (1-2, 7-8, 12-13, and 25-27 days of age). There was considerable variation amongst animals in each age group, but no evidence of a major increase or decrease in noradrenaline content during the first 4 weeks of life. Intravenous infusion of tyramine (100 micrograms X kg-1 X min-1) increased plasma noradrenaline concentration, oxygen consumption, and blood flow to brown fat. Thus noradrenaline released from endogenous sites, as well as injected noradrenaline, will initiate the thermogenic response of brown fat. Ultrastructurally, unmyelinated axons that were not organized in a fascicle were observed adjacent to the adipocytes in the late gestation fetus. By 1 week of age of axons were surrounded by Schwann cell cytoplasm which formed a fascicle. However, no evidence of myelination was found up to 21 days of age. Collectively, the data indicate that the brown adipocyte is fully responsive at 1-2 days of age even though myelination of the nerves is incomplete, and that the incomplete development of the sympathetic nerves at birth is not a factor in the synthesis of noradrenaline in the very young rabbit. In addition, brown fat of the newborn rabbit is not as thermogenically active as the brown fat of the cold-acclimated rat.  相似文献   
109.
Branched-chain alpha-ketoacid dehydrogenase complex was isolated from rat heart, bovine kidney, and rabbit liver, heart, kidney, brain, and skeletal muscle. Phosphorylation to approximately 1 mol Pi/mol alpha-subunit of the alpha-ketoacid decarboxylase component was linearly associated with 90-95% inactivation. The complex from some tissues (i.e., from rabbit kidney and heart, and rat heart) showed 30-40% more phosphate incorporation for an additional 5-10% inactivation. Reverse-phase HPLC analysis of tryptic digests of 32P-labeled complexes from all of the above tissues revealed two major (peaks 1 and 2) and one minor (peak 3) phosphopeptide which represent phosphorylation sites 1, 2, and a combination of 1 and 2, respectively. These phosphopeptides, numbered according to the order of elution from reverse-phase HPLC, had the same elution time regardless of the tissue or animal source of the complex. The amino acid sequence of site 1 from rabbit heart branched-chain alpha-ketoacid dehydrogenase was Ile-Gly-His-His-Ser(P)-Thr-Ser-Asp-Asp-Ser-Ser-Ala-Tyr-Arg. Regardless of the source of the complex, both sites were almost equally phosphorylated until total phosphorylation was approximately 1 mol Pi/mol of alpha-subunit and the rate of inactivation was correlated with the rate of total, site 1, or site 2 phosphorylation. Phosphorylation beyond this amount was associated with greater site 2 than site 1 phosphorylation. alpha-Chloroisocaproate, a potent inhibitor of branched-chain alpha-ketoacid dehydrogenase kinase activity, greatly reduced total phosphorylation and inactivation; however, phosphorylation of site 2 was almost abolished and inactivation was directly correlated with phosphorylation of site 1. Thus, the complex isolated from different tissues and mammals had an apparent conservation of amino acid sequence adjacent to the phosphorylation sites. Both sites were phosphorylated to a similar extent temporally although site 1 phosphorylation was directly responsible for inactivation.  相似文献   
110.
A glycogen phosphorylase analog missing only the amino-terminal 16 to 18 residues, which include the phosphorylation site, was produced by subtilisin Carlsberg cleavage of phosphorylase b in the presence of caffeine. The analog, named phosphorylase b's, was purified, and its enzymatic properties were compared with those of phosphorylase b. The KM's for glucose 1-phosphate are similar, but phosphorylase b's has a VM 43% higher than that of phosphorylase b. Also, phosphorylase b's is less sensitive to inhibition by glucose 6-phosphate and stimulation by sodium fluoride than is phosphorylase b. The subunit interactions in the two enzyme forms were also compared. The monomer-monomer interactions in phosphorylase b's are weaker than in phosphorylase b, as evidenced by a faster rate of resolution of the coenzyme, pyridoxal phosphate, from phosphorylase b's. The dimer-dimer interactions are also weaker in phosphorylase b's than in phosphorylase b, because phosphorylase b's does not form tetramers or crystals as readily as does phosphorylase b. Because removal of the amino-terminal segment changes the properties of the enzyme, this segment must be interacting with other parts of the protein. This statement conflicts with previous interpretation of X-ray crystallographic data that suggest that the amino-terminal region of phosphorylase b is freely mobile. Possible explanations for this contradiction are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号